

EDGARTOWN CWMP UPDATE

Phase 1 Project Overview

Project Director: Ian Catlow, PE February 12, 2024

OVERVIEW

CWMP Drivers & Process

- Existing Conditions
 - Land Use & Demographics
 - Nutrient Loading & TMDLs
 - Wastewater Infrastructure

Future Conditions

- Population Growth & Development
- Nutrient Loading

Needs Analysis

Next Steps

- Alternatives Analysis
- MEPA Review

Photo Credit: Edgartown Great Pond Cut, Great Pond Foundation

CWMP DRIVERS

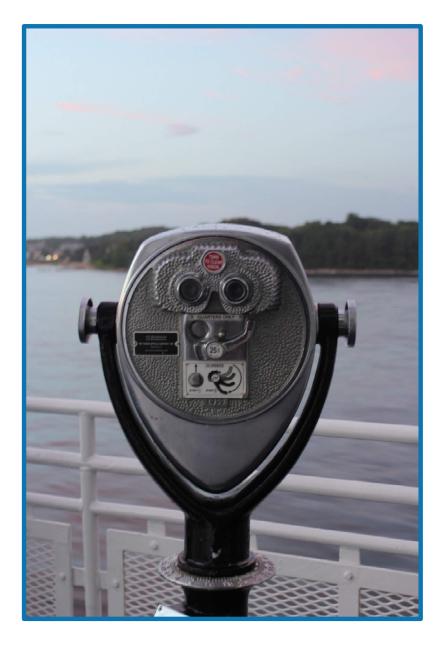
20-Year Planning Cycle

- Population Changes
- Infrastructure Assessment

Title 5 Changes

- Sengekontacket TMDL
- Edgartown Great Pond TMDL

Watershed Permit

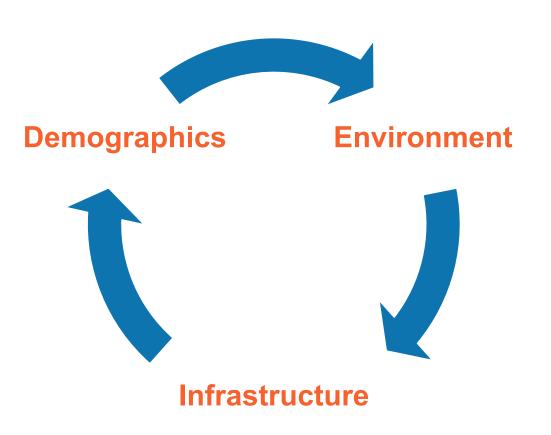

- Extend Title 5 Compliance
- Avoid DEP Sewer
 Connection Moratorium

CWMP PROCESS

Phase 1	Existing Conditions Assessment Future Conditions Assessment Needs Analysis	
Phase 2	Alternatives Analysis Recommended Plan	
MEPA Review of CWMP	Public Input Regulatory Review	
Watershed Permits	Sengekontacket Pond Edgartown Great Pond Establish 20-Year Plan	

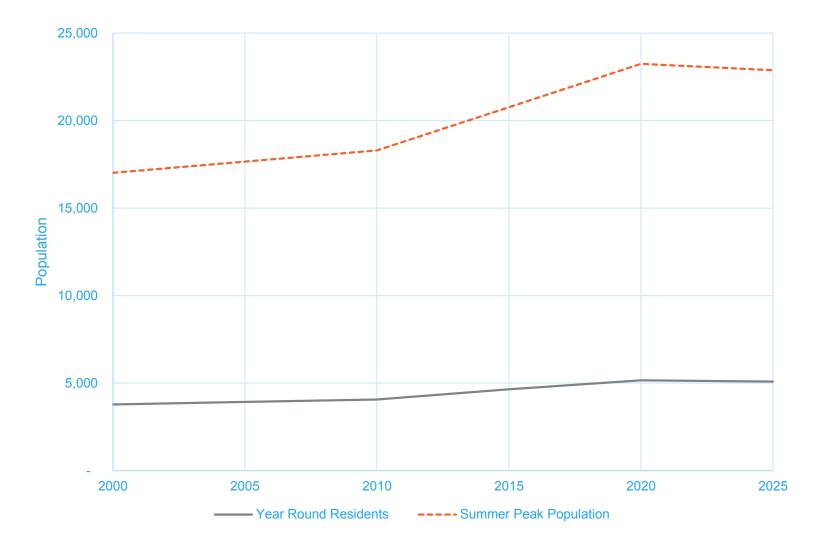
EXISTING CONDITIONS ASSESSMENT

Demographics


- Historic Population Growth
- Development Patterns

Environment

- Water Quality Impacts
- Climate Change Impacts


Infrastructure

- Capacity Assessment
- Aging Wastewater Treatment Systems
- Asset Management Approach

EXISTING POPULATION TREND

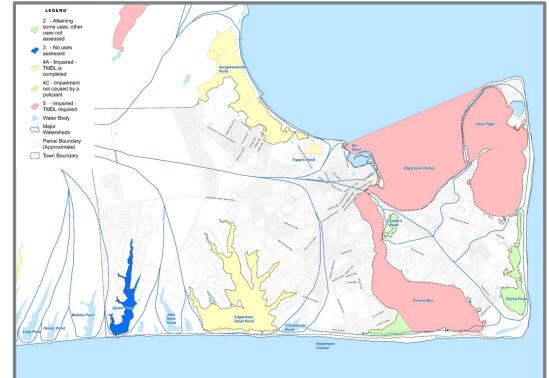
Source: Umass Donahue Institute

DEVELOPMENT PATTERNS

EXISTING WATER QUALITY ISSUES

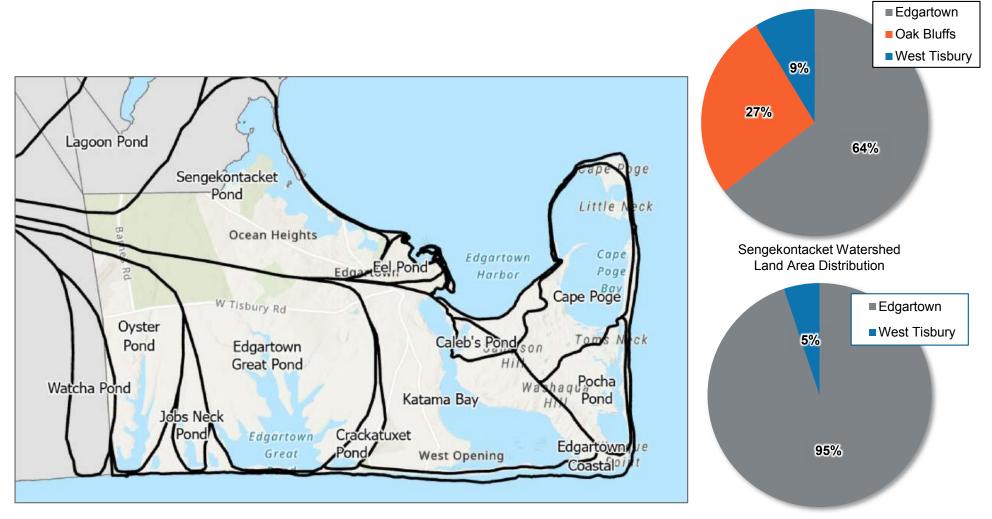
Total Maximum Daily Loads (TMDL)

Approved TMDLs


- Edgartown Great Pond
- Sengekontacket Pond
- Trapps Pond

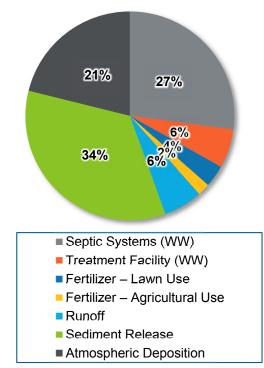
TMDLs Required

- Edgartown Harbor
- Katama Bay


Other Notable Areas

- Crackatuxet Pond

EDGARTOWN'S WATERSHEDS


Edgartown Great Pond Watershed Land Area Distribution

TMDL GOALS – EDGARTOWN GREAT POND

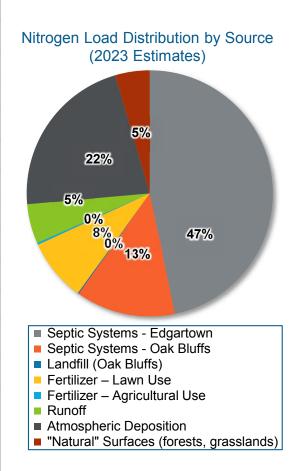
Sources of Nitrogen Loading	2007 MEP Report Projected Nitrogen Load (kg/y)	2023 Watershed Nitrogen Load (kg/y)
Septic Systems (WW)	5,536	5,167
Treatment Facility (WW)	2,404	1,378
Fertilizer – Lawn Use	659	659
Fertilizer – Agricultural Use	368	368
Runoff	1,157	1,157
Sediment Release	6,627	6,627
Atmospheric Deposition	4,068	4,068
Total Load	20,819	19,424
Total Maximum Daily Load	16,81	2
Load Reduction Target	2,612 (2,4	482) ²

Nitrogen Load Distribution by Source (2023 Estimates)

Tighe&Bond

1 – All septic loadings were developed using 90% of the average water use of 258.5 gpd and a nitrogen concentration of 26.25 mg/L.

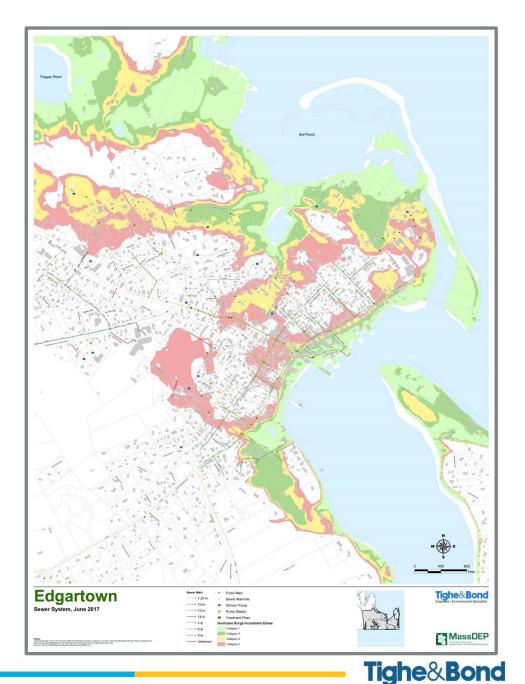
2 – Load Reduction Target adjusted for assumption that Edgartown is responsible for 95% of the total load.

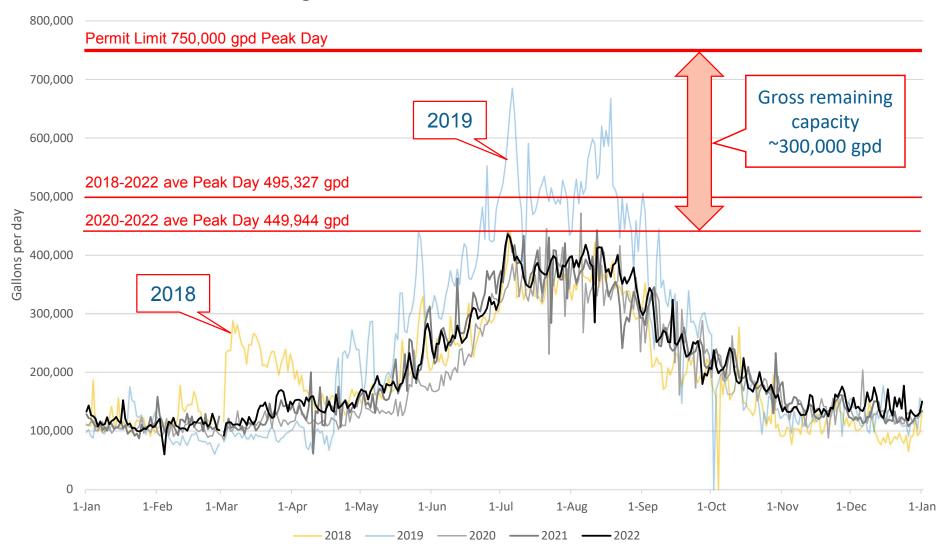

TMDL GOALS – SENGEKONTACKET POND

Sources of Nitrogen Loading	2011 MEP Report Nitrogen Load (kg/y)	2023 Watershed Nitrogen Load (kg/y)
Septic Systems - Edgartown	— 10,255	8,738
Septic Systems - Oak Bluffs	10,233	2,458
Landfill (Oak Bluffs)	26	26
Fertilizer – Lawn Use	1,540	1,540
Fertilizer – Agricultural Use	47	47
Runoff	972	972
Manageable Total	12,840	13,791
Atmospheric Deposition	4,110	4,110
"Natural" Surfaces (forests, grasslands)	851	851
Total Load	17,801	18,742
Total Maximum Daily Load	16	,757
Load Reduction Target	1,985	(1,270) ³

1 - Edgartown septic loadings were developed using 90% of the average water use of 258.5 gpd and a nitrogen concentration of 26.25 mg/L.

2 - Oak Bluffs septic loadings were developed using 90% of the average water use of 185 gpd and a nitrogen concentration of 26.25 mg/L.


3 - Load Reduction Target adjusted for assumption that Edgartown is responsible for 64% of the total load.


CLIMATE CHANGE & RESILIENCY

- 2050 Sea Level Rise Estimated at 1.6 to 1.8 FT +/-
- 4 Pump Stations at Risk of Inundation
- Coastal Portions of Collection
 System at Risk
- WWTF Outside Inundation
 Zone
- Town Implementing Resiliency Measures
 - Submersible Pumps
 - Backup Power
 - SCADA/Remote Control Systems

REMAINING WWTF CAPACITY

Edgartown WWTF Influent Flows 2018-2022

WWTF - PRELIMINARY CAPACITY ASSESSMENT

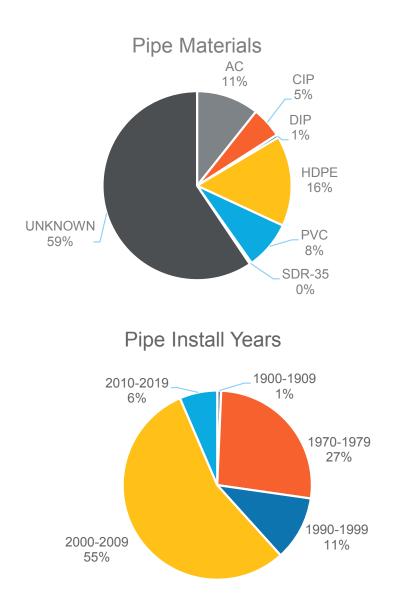
ltem	Flow (GPD)	Notes
WWTF Permitted Flow	750,000	Max Day Basis
Influent Max Day Flow	449,944	Average 2020 - 2022
Remaining Capacity Subtotal:	300,056	
Edgartown Great Pond Reserved Capacity	69,400	Based on Mandatory Sewer Tie- In per BoH Regulation and DEP Memorandum of Understanding.
Net Remaining Capacity Total:	230,656	

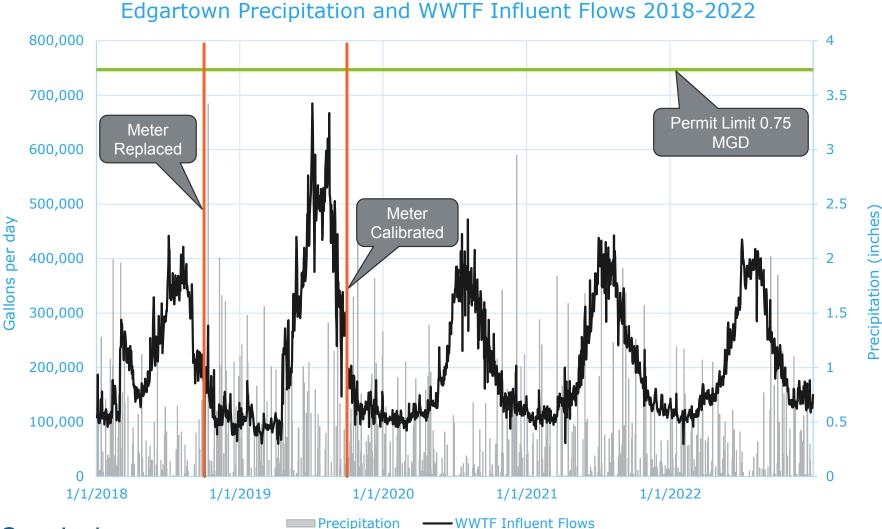
EXISTING FACILITIES CONDITION ASSESSMENT

Risk Based Assessment

- Risk = Probability of Failure x
 Consequence of Failure
- Condition Assessment Based on Records Review & Field Survey
- Consequence of Failure Based on Safety, Environmental & Compliance Concerns

Scope of Assessment

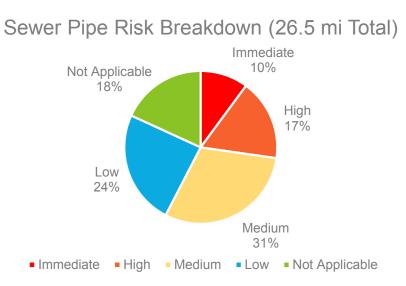

- Collection System
- Wastewater Treatment Facility



COLLECTION SYSTEM OVERVIEW

- 6.83 Miles Gravity Sewer
- 10.05 Miles Force Main
- 9.7 Miles Low Pressure Main
- 500 +/- e-One Grinder Pumps
- 8 Pump Stations

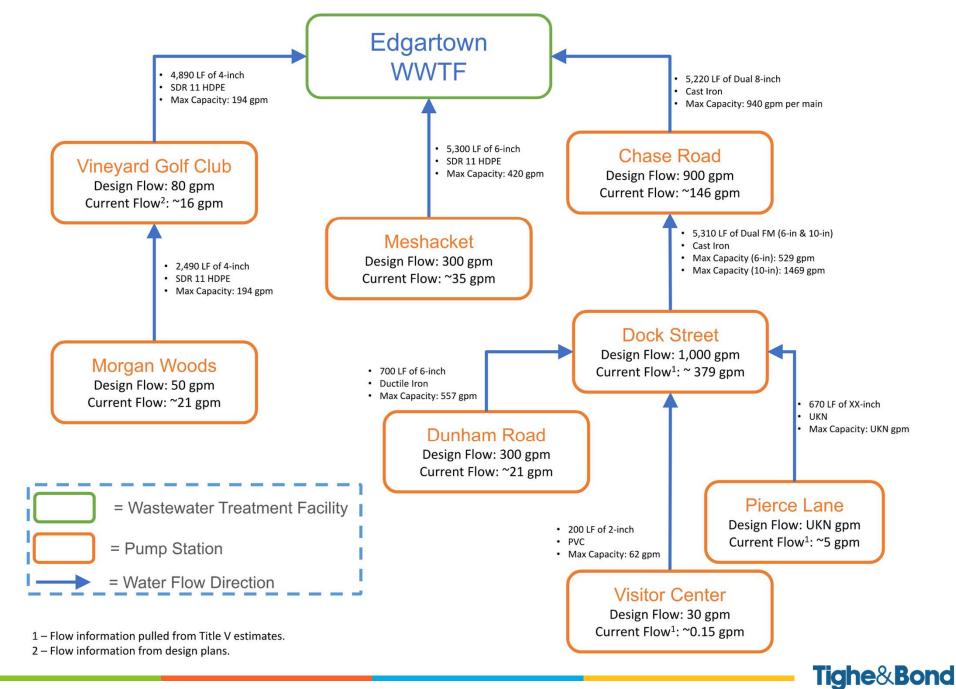
PLANT FLOW VS RAINFALL



Conclusions:

- 1. WWTF Flow Rates Don't Correlate Well With Rainfall
- 2. Infiltration & Inflow Is Not A Significant Issue
- 3. Coastal Areas Should Be Monitored For Tide or Storm Influence

COLLECTION SYSTEM – RISKS AND COSTS



Cost to CCTV By Risk		
Immediate	\$37,000	
High	\$122,000	
Medium	\$63,000	
Low	\$8,000	
Total	\$230,000	

Costs to Reline/Replace Immediate & High Risk Pipes

Risk	Cost to Reline (Worst Case)	Cost to Replace (Worst Case)
Immediate	\$1,190,000	\$3,010,000
High	\$5,490,000	\$14,880,000

COLLECTION SYSTEM - PUMP STATIONS

CHASE ROAD PUMP STATION

- Station Feeds WWTF & Handles 90% of Influent
- Recent Upgrade to Pumps, Controls & SCADA (2021)
- Immediate Action: Replace 2 Gates & 2 Check Valves
- Major Upgrade Anticipated
 With System Expansion
 - Difficult Dry Well Access
 - Small Wet Well Limits Capacity
 - Discharge Mains Have History of Breaks

DOCK STREET PUMP STATION

- Second Largest Pump Station Handling Commercial District
- Recent Upgrade to Pumps, Controls, SCADA & Resiliency
- Station Within Flood Zone
- Immediate Action: Install 2 Gates

DUNHAM ROAD PUMP STATION

- Small Service Area
- Recent Upgrade to Pumps, Controls, SCADA & Resiliency (2021)
- Station Within Flood Zone
- Immediate Action: Repair Basement Level Structural Leak
- Moderate Risk: Repair Drywell Joints & Replace Hatch

MESCHACKET PUMP STATION

- Moderate Service Area
- Recent Upgrade to SCADA
- Excessive Scum & FOG Issues
- Immediate Actions: Replace Pump Rail Mounts & Level Control System, Improve Wet Well Mixing System

CHURCH STREET & PIERCE LANE PUMP STATIONS

Church Street PS

- Small Service Area
- Station Within Flood Zone
- Recent SCADA Upgrade
- Immediate Action: Upgrade
 Level Controls
- High Risk: Structural Repairs to Fix Wet Well & Slope to Pumps

Pierce Lane PS

- Small Service Area
- Station Within Flood Zone
 - Controls Susceptible to Inundation
- Medium Risk: Replace With Duplex E-One Station, Backup Power Connection & Transfer Switch

VINEYARD GOLF & MORGAN WOODS PUMP STATIONS

Vineyard Golf PS

- Flow From Morgan Woods
- Recent SCADA Upgrade
- Immediate: Upgrade with Ultrasonic Level Controls
- High Risk: Provide Local Electrical Feed, Controls and Backup Power

Morgan Woods PS

- Moderate Service Area
- Recent Flow Meter and SCADA Upgrade
- Immediate: Upgrade with Ultrasonic Level Controls



PUMP STATION COST SUMMARY

Pump Station	Immediate Risk Cost	High Risk Cost	Near Term Issues
Dunham Rd	\$32,000	-	Within Flood Zone, Structural Leak
Chase Rd	\$55,000	-	Aged Gate & Check Valves, Poor Access, Small Wet Well, FM Breaks
Dock St	\$30,000	-	Within Flood Zone, Aged Gate Valves
Church St	\$23,000	\$36,000	Redundant Level Controls, Wet Well Improvements
Meschacket	\$23,000	-	Pump Mounts Failing, Redundant Level Control & Improved Mixing Needed
Pierce Lane	-	-	Within Flood Zone
Vineyard Golf	\$23,000	\$211,000	Redundant Level Controls, Local Pump Controls & Backup Power
Morgan Woods	\$23,000	-	Redundant Level Controls
TOTAL	\$209,000	\$247,000	

*Costs do not include upgrades for future capacity expansion required by CWMP

WWTF OVERVIEW

PRELIMINARY TREATMENT BUILDING

- Provides Influent Screening, Scum Pumping, Primary Sludge Pumping
- New Screen, Scum Pump & Sludge Pumps (2018 – 2023)
- Immediate Actions: Replace
 Influent Stop Gates & Influent
 Sampler
- High Risk: Replace Influent Slide Gates & Plant Water Piping, Repair Leaky Electrical Conduits/Boxes, Replace Headworks Exhaust Fan, Unit Heater & Ductwork, Repair Concrete Floors & Channel

PRIMARY CLARIFIERS

- Provides Primary Scum & Solids
 Separation
- All Equipment Original To 1994
 Upgrade
- High Risk: Replace Clarifier Mechanisms & Drives; Provide Scum Mixer; Replace Hatches; Repair Degraded Concrete

CAROUSEL AERATION BASINS

- Provides Nitrogen, BOD, and Solids Removal
- Instrumentation Upgraded (2022)
- All Mechanical Equipment
 Original To 1994 Upgrade
- Immediate Action: Repair Concrete in Tanks
- Medium Risk: Anoxic Mixers, Influent Gates, Surface Aerators, Effluent Weirs, Plant Water Spray System, DenitIR System

SECONDARY CLARIFIERS

- Provides Separation of Activated Sludge from Treated Wastewater
- Drives Replaced 2014; Remaining Equipment From 1994 Upgrade
- Immediate Action: Replace Failed Clarifier Distribution Box Gates
- Medium Risk: Replace Collectors, Blades, Baffles, and Launder Covers. Paint Drives

POST TREATMENT BUILDING

- Houses WAS and RAS Pumps, UV Disinfection, Chemical Feed and Plant Water Systems
- WAS Pump Replaced 2023; UV System Replaced 2018; Remaining Equipment From 1994 Upgrade
- Immediate Action: Replace Effluent Sampler, Plant Water System, Calibrate Flow Meter
- High Risk: Replace Secondary Scum Pump and Chemical Feed Systems

 Medium Risk: Replace RAS Pumps, Odor Control Air Compressors, UV Ballasts & Lamps

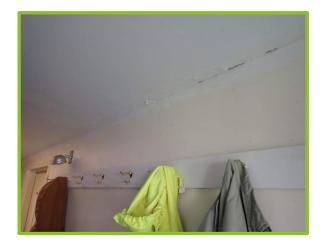
SEPTAGE RECEIVING BUILDING

- Septage Discharge Location and Grit Removal
- Grit screw shaft replaced 2023; Remaining Equipment From 2002
- Immediate Action: Repair Grit Screw Screen, Replace Magnetic Flow Meter
- Medium Risk: Odor Control, Air Compressor

SLUDGE HOLDING TANKS

- Primary & Waste Activated Sludge Storage and Aeration
- Instrumentation Upgraded 2022; Remaining Equipment From 1994
- High Risk: Replace Slide Gates, Sluice Gate Operators, Sludge Blowers

LAB / WORKSHOP BUILDING


- Houses Sludge Dewatering Feed Pumps, Grinders, Sludge Storage Tank Blowers, Laboratory, Offices
- SCADA Upgrades 2022; Mechanical Equipment From 1994
- Immediate Action: Repair Exterior Cracking, Replace Aeration Timers
- High Risk: Sludge Holding Tank Blowers

OPERATIONS BUILDING – ADMIN SIDE

- Houses SCADA System, Offices, Break
 and Locker Rooms
- SCADA System Upgraded 2022; Remaining Systems From 1994 Upgrade
- Immediate: Replace HVAC System, Roof Shingles, Doorways; Repair Ceiling and Trusses; Mold Remediation

OPERATIONS BUILDING – SOLIDS HANDLING

- Provides Sludge Dewatering and Disposal
- Dewatering System Upgrade Design Underway; Sludge Cake Pump Repaired (2023), Equipment From 1994
- Immediate: Replace BFP With Screw Press, Upgrade Polymer System, Eye Wash, Repair Exhaust Fans

RAPID INFILTRATION BASINS

- Discharge Location of Treated Effluent
- Rehabilitated in 2022
- Monitor and Maintain: Alternate Basins, Rake and Remove Vegetation

SITEWIDE ASSETS

Emergency Generator:

- Provides Backup Power
- 1994 Upgrade Project
- Medium Risk

Odor Control System:

- Treats Odorous Air From Headworks, Primary Clarifiers, Dewatering Sludge Holding and Septage Tanks
- 1994 Upgrade Project
- Medium Risk

PROJECT PENDING CWMP RECOMMENDATIONS

Potential / Anticipated Needs

- Upgrade RAS Pumps
- Aeration Carrousels Replace Mixers, Gates, Aerators, Weirs, and Denite IR System
- Additional Secondary Clarifier
- Additional Tankage

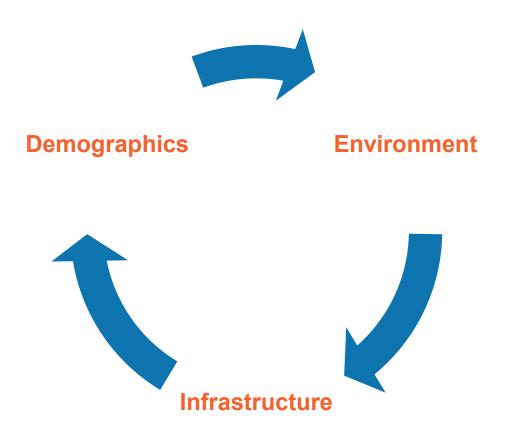
WWTF COST SUMMARY

WWTF Site / Process	Immediate Risk Cost	High Risk Cost
Preliminary Treatment Building	\$57,000	\$705,000
Primary Clarifiers	-	\$1,373,000
Septage Receiving	\$80,000	-
Post Treatment Building	\$950,000	\$1,273,000
Carousel Aeration Basins	\$21,000	-
Secondary Clarifiers	\$69,000	-
Sludge Holding Tanks	-	\$1,312,000
Laboratory Building	\$25,000	-
Operations Building - Admin	\$796,000	-
Solids Handling	\$1,800,000	-
TOTAL	\$3,798,000	\$4,663,000

*Costs do not include upgrades for future capacity or expansion required by CWMP

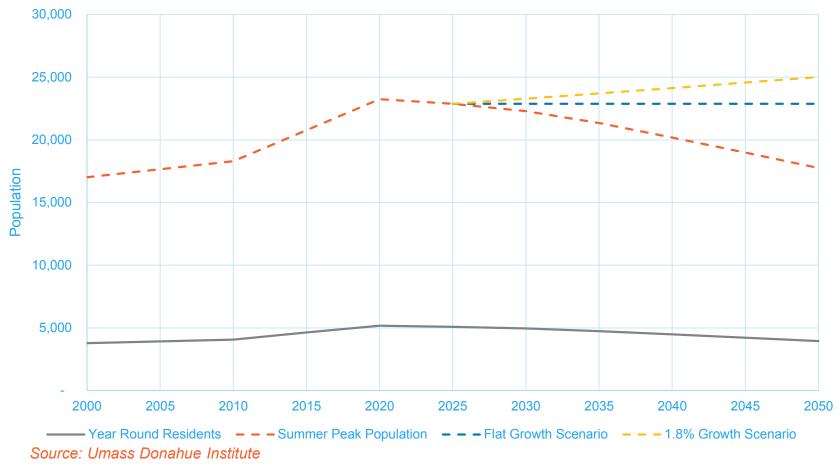
FUTURE CONDITIONS ASSESSMENT

Demographics


- Projected Population Growth
- Development Patterns

Environment

- Water Quality Impacts


Infrastructure

Capacity Assessment

POPULATION PROJECTIONS

Notable Trends:

1. Aging population of baby boomers contributes to drop-off in year round population after 2020.

- 2. Internet and COVID driven remote work options have converted many homes from seasonal to year-round.
- 3. Continued new home starts drive summer occupancy increases.

FUTURE CONDITIONS – FLOWS AND LOADS

Base Condition

- Flows: Average Day Flows Using Title 5, Scaled With Observed WWTF Flows
- Nitrogen Loads: MEP Method

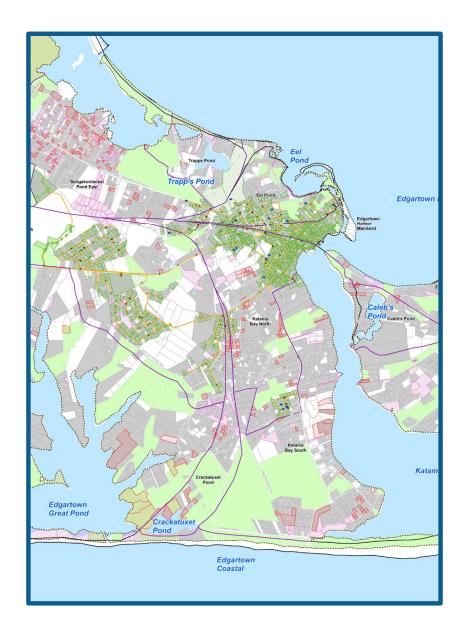
20-year Buildout

- Changing Age Demographics
- Considers Master Plan Developments
- Considers Historic New Home Permits
- Considers Trends Towards Remote Work/Owner Occupancy
- Assumes All New Development In Existing Service Area Connected to Sewer
- Assumes All New Development Outside Existing Service Area Connected to Septic System
- Infiltration & Inflow Allowance Based on TR-16
- Commercial/Industrial/Redevelopment Allowance

FUTURE FLOW & LOAD PROJECTIONS

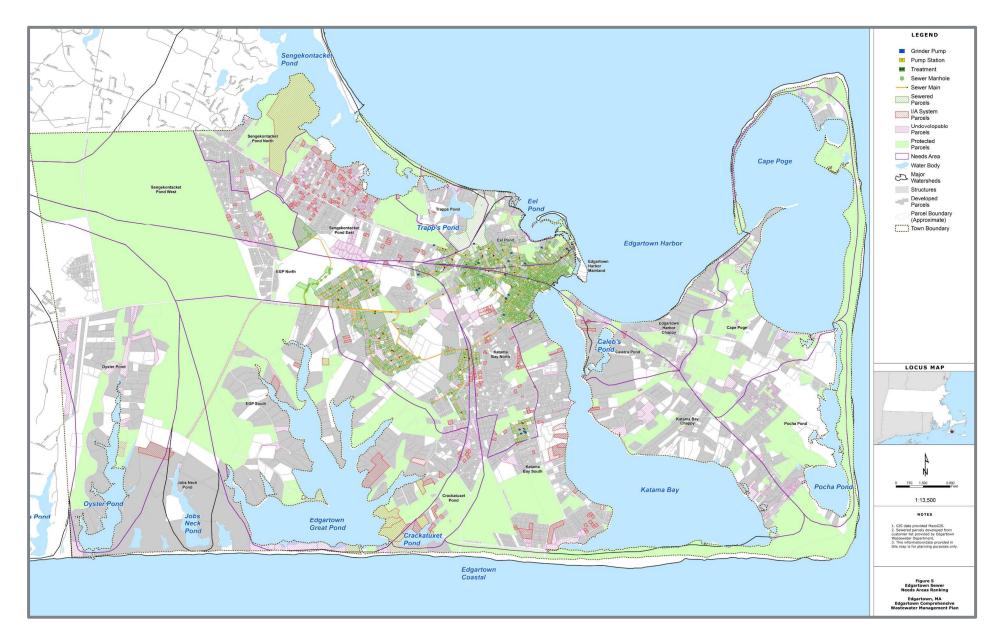
Watershed	20-Year Flow (GPD)		20-Year Nitrogen Load (kg/yr)	
	Septic	Sewer	Septic	Sewer
Caleb Pond	8,000	0	300	0
Cape Poge	9,000	0	300	0
Crackatuxet Pond	10,000	0	400	0
Edgartown Harbor Chappy	9,000	0	400	0
Edgartown Harbor Main Island	2,000	33,000	100	1,200
Eel Pond	13,000	23,000	500	900
Edgartown Great Pond North	57,000	26,000	2,000	2,000
Edgartown Great Pond South	23,000	36,000	800	0
Job's Neck Pond	1,000	0	50	0
Katama Bay Chappy	17,000	0	600	0
Katama Bay North	63,000	112,000	2,000	4,000
Katama Bay South	44,000	1,000	2,000	50
Oyster Pond	21,000	0	800	0
Pocha Pond	13,000	0	500	0
Sengekontacket Pond East	58,000	9,000	2,000	300
Sengekontacket Pond North	23,000	0	800	0
Sengekontacket Pond West	17,000	0	600	0
Trapps Pond	6,000	2,000	200	100
Total	394,000	206,000	14,350	8,550

¹ Sewer flows reflect currently connected parcels and those abutting sewer in the street. They do not include new connections or sewer extensions. 2. Load estimates based on septic effluent TN of 26.3 mg/L (per MEP study) and WWTF effluent TN of 7.0 mg/L.

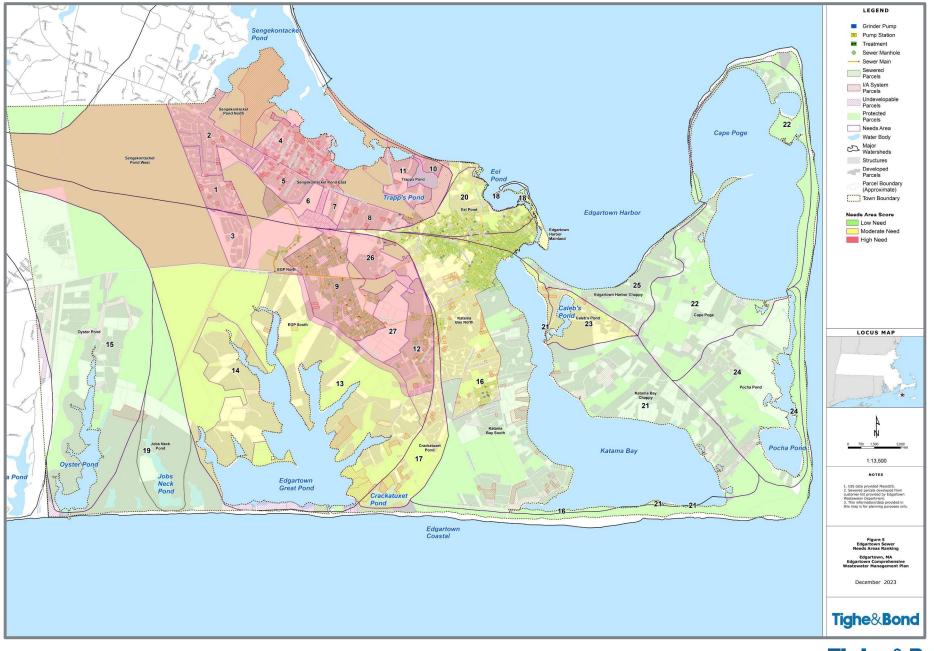

NEEDS ANALYSIS PROCESS

Define Study Areas

- Watershed Based
- Subdivide Watersheds Spanning Water Bodies
- Subdivide Watersheds Based on Development Density/Zoning
- Senge 4 areas, EGP North/South, Katama North/South


Evaluation Criteria

- Lot size
- Soil Drainage Class
- Proximity to Environmental Resources
 - Zone II, TMDL
- Septic Performance, Water Table



STUDY AREA OVERVIEW

NEEDS ANALYSIS RESULTS

HIGH NEEDS AREAS & THE TMDL

Edgartown Great Pond

- TMDL 16,812 kg/yr
- Edgartown Load Reduction Target 2,482 kg/yr
- Estimated Future Septic Load 2,800 kg/yr
- Moving All Septic Systems to WWTF Reduces Load by 2,055 kg/yr
 - This Increases the WWTF Load by 745 kg/yr

Conclusions

- Connecting All EGP Septic
 Systems to WWTF Won't Meet
 TMDL
- Connecting All EGP Septic
 Systems Is Impractical

Sengekontacket Pond

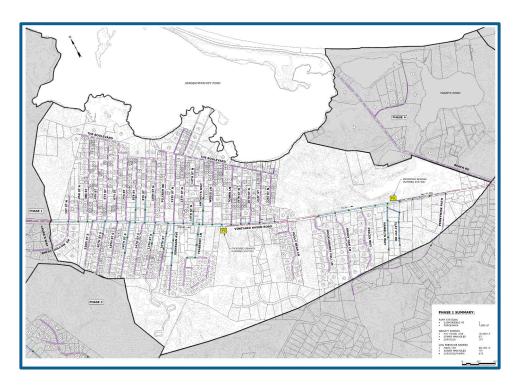
- TMDL 16,745 kg/yr
- Edgartown Load Reduction Target 1,270 kg/yr
- Estimated Future Septic Load
 3,400 kg/yr
- Moving All Septic Systems to WWTF Reduces Load by 2,496 kg/yr
 - This Assumes WWTF Effluent Returned to Senge

Tighe&Bond

Conclusions

 Connecting Only Senge East (Ocean Heights) to WWTF
 Reduces Load by 1,468 kg/yr & Exceeds Reduction Target

ONGOING WORK – ALTERNATIVES ANALYSIS


Alternatives Under Consideration

- Evaluate Centralized Treatment Options
- Determine Conceptual Sewer Layouts & Costs
- Identify Opportunities for I/A or Decentralized Systems
- Identify Opportunities for Non-Traditional Nutrient Mitigation
- Locate Potential Discharge Areas in Sengekontacket Watershed
- Determine Costs and Funding Opportunities
- Develop Recommended Plan
- Define Monitoring Plan & Adaptive Management Strategy
- Initiate MEPA ENF Review Process
 - MEPA Likely to Scope Additional Work in an Environmental Impact Report (EIR)

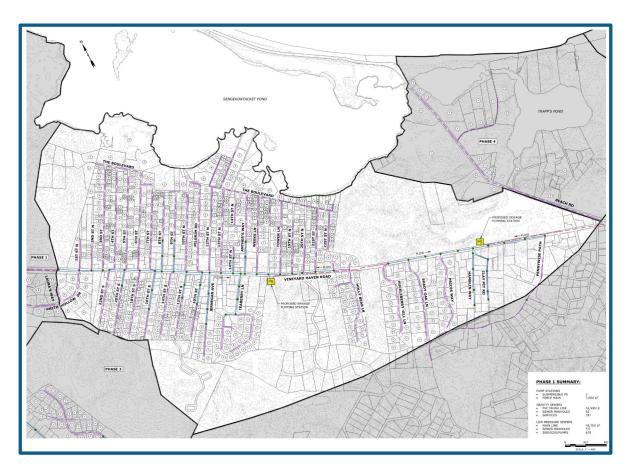
FUTURE WORK FOLLOWING MEPA REVIEW

- Managed Growth Zoning Provisions
- Collection System Preliminary
 Design
 - EGP, Senge & Katama Bay
- Sengekontacket Groundwater
 Discharge Preliminary Design
- WWTF Upgrade Preliminary
 Design
- Permeable Reactive Barrier
 Pilot Program
 - Focus On WWTF Discharge Plume

QUESTIONS & DISCUSSION

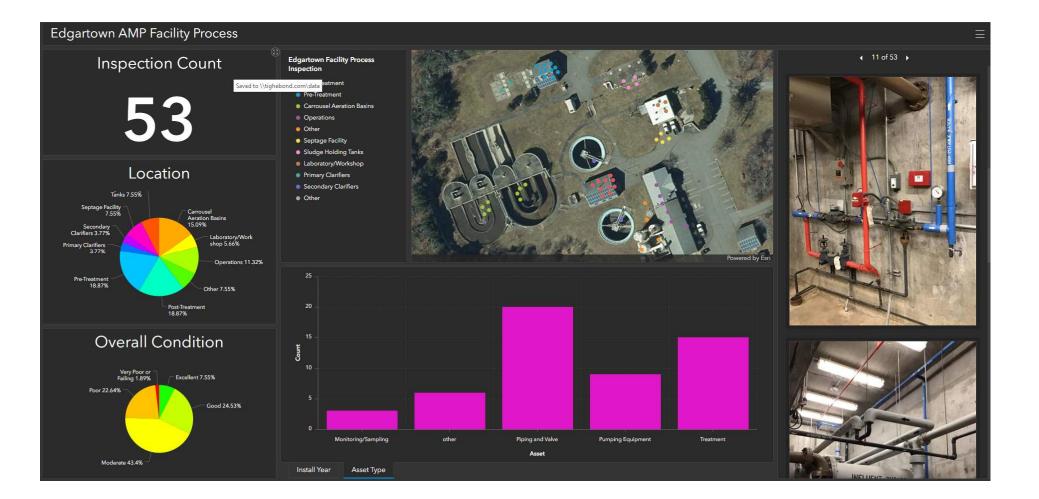
SENGEKONTACKET EAST STUDY AREA

617 Existing Developed Lots

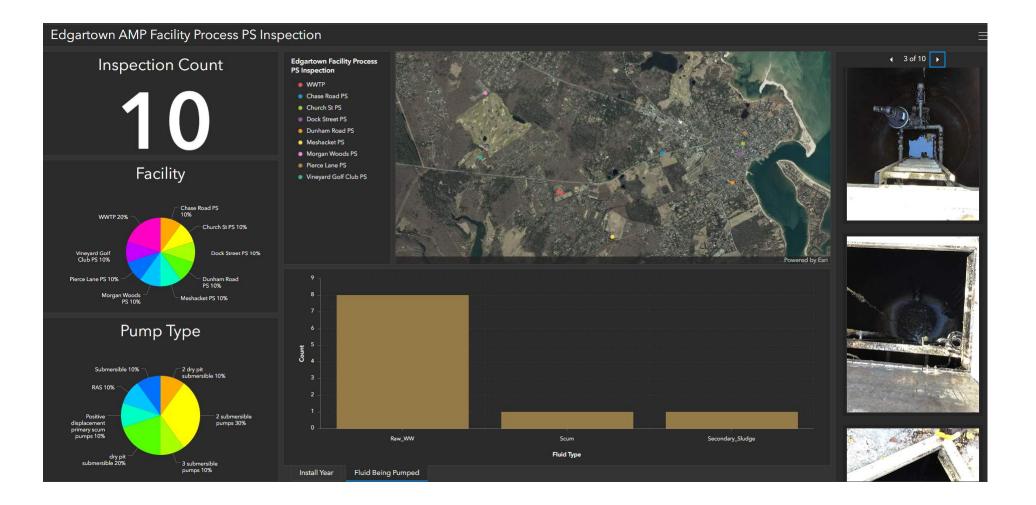

Average 11 DTO Per Connection

Sewer Rate \$82/DTO/YR

Annual Revenue \$556,534


Planning Estimate \$40M

- 0% Loan With Approved CWMP
- 25% Grant With Cape/Islands
 Clean Water Trust Fund
- 30 Year Bond = \$1M Per Yr
- Added Revenue Through Local Short-Term Rental Tax Possible



GIS DASHBOARD - WWTF

GIS DASHBOARD – PUMP STATIONS

